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Abstract: In this paper we describe an approach for teaching the relation between chemical equilibrium and free 
energy that is, according to our experience, very efficient and enlightening. This approach has a strong visual 
appeal and can be used at different levels, from simple presentation of the results as graphs of free energy versus 
reaction mixture composition, up to full derivation of formulas to find the equations of the curves. 

Introduction 

Teaching chemical equilibrium as a comprehensible 
fundamental concept is a challenging task. While the students 
usually understand quite well the reasons for the chemical 
equilibrium based on reaction kinetics considerations, the 
relationship between equilibrium and thermodynamic 
quantities, particularly the entropy of mixing, is often poorly 
understood, largely due to the difficulty of understanding the 
connection between mathematical expressions and the physical 
phenomena. 

A considerable improvement in clarity has been attained in 
this matter by textbooks in the last few decades [1]. A curve of 
Gibbs free energy versus reaction progress (at constant 
temperature and pressure), showing a minimum that 
corresponds to equilibrium, is now commonplace, and students 
can easily understand why the reaction progress brings the 
system to the equilibrium (minimum G) point, regardless of the 
side from which it is started. Why this curve has a minimum, 
however, is still not easy to understand for most students, and 
how to plot the curve that would demonstrate the desired 
aspects is still a hard task for many lecturers. Different 
approaches have been proposed in articles on this matter: 
Cohen and Whitmer [2] give a demonstration largely based on 
chemical potential of reactants and products; MacDonald [3] 
shows clearly the importance of entropy of mixing in these 
processes; Shultz [4] also emphasizes the role of entropy 
discussing a specific reaction. 

In this paper we propose an approach that requires a 
minimum of concepts. We found that if we choose a simple 
system, as the one described ahead, there is no real need to use 
the quantity defined as �extent of reaction,� or �reaction 
progress�; the more intuitive concentration (mole fraction, to 
keep the mathematical transformations to a minimum) can be 
used instead. The concepts of entropy, entropy of mixing, and 
Gibbs free energy are also required; particularly important is a 
previous knowledge of the connection between Gibbs free 
energy and spontaneity of transformations. 

The Proposed Approach 

Chemical transformations can involve a variable number of 
substances, both as reagents and as products, and a variable 
molar proportion among the substances. Derivations based on 
general chemical equations usually demand a high level of 

abstraction, not easily attainable to the average junior student; 
definition of quantities such as the extent of reaction (see note 
[7]) are also required, resulting in a dispersion of the students� 
minds and opening the doors for mistaken interpretations (the 
student can, for instance, start to think that the extent of 
reaction is the fundamental quantity that explains the existence 
of equilibrium). 

On the other hand, when we consider a simple system with 
strongly limited variations, we can go fast and straight to the 
heart of the problem, and a satisfactory first comprehension 
(that should later be complemented by considering more 
general approaches) can be easily attained. 

A simple general chemical transformation will be considered 
here: 

A + B C + D

1-x x x1-x  

To simplify the calculations, we will say that 

(a) all compounds are ideal liquids (∆Hmixing = 0), and they 
are all miscible with each other; 

(b) all mixtures to be considered contain no other substance 
besides A, B, C, and D; 

(c) all mixtures contain a total amount of 2 mol; and 
(d) The Gibbs free energy of (A + B) is higher than (or equal 

to) the free energy of (C + D), or 
. ( ) ( )0 0 0 0

C D A B 0G G G G+ − + ≤

If we start from A (1 mol) and B (1 mol), all possible 
mixtures will have the composition summarized in Table 1. 

The value of x can vary from 0 to 1, including the extremes. 
Clearly, the corresponding mole fractions (XA, XB, etc.) are 
obtained by dividing the corresponding amount (mol) by 2 
(which is the total amount). 

We will say that the free energy of the mixture of reactants 
(A + B) (x = 0) is G1, and the free energy of the mixture of 
products (C + D) (x = 1) is G2 [5]. The question we intend to 
answer is �What is the free energy of the other possible 
compositions?� 

A simple way to achieve this objective occurs if we imagine 
that we can prepare mixtures of A, B, C, and D without any 
reaction taking place in the meanwhile. As this is an 
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Table 1. Composition of the Reaction Mixture 

Substance Amount (mol) Mole fraction 
A 1 � x (1 � x)/2 
B 1 � x (1 � x)/2 
C x x/2 
D x x/2 

 

A + B
1-x mol
of each

C + D
x mol

of each

Membrane

 
Figure 1. Mixture vessel with the membrane in place. 
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Figure 2. Energy of the several possible combinations of 
(A + B) with (C + D), before mixing (with the membrane 
still in place). 

exclusively mental operation, it is easy to imagine that 
mixtures can be prepared in so short a time that no significant 
chemical transformation can occur during the process. 

Under these premises, we prepare now in a vessel an 
equimolar mixture of A and B and, in another vessel, an 
equimolar mixture of C and D. Then we take an amount of the 
first mixture containing (1 � x) mol of A (and, thus, containing 
also (1 � x) mol of B), and an amount of the second mixture 
containing x mol of C (and, thus, containing also x mol of 
D).We put these two solutions in the same vessel, which is 
provided with a membrane that keeps the two solutions 
SEPARATED from each other (see Figure 1). What is the free 
energy of this system? Of course, it will be the sum of the free 
energies of each solution, 

  (1) ( ) ( )1 2 2 11t tG x G xG or G G G x= − + = − + 1G

)

X

In a graph, this equation corresponds to the straight line 
between G1 and G2, as in Figure 2. 

What will happen now if we remove the membrane of one 
of these combinations? As the substances are all miscible 
(assumed as a hypothesis), a complete homogenization will 
occur. 

The spontaneity of the homogenization process already 
shows that the resulting mixture has a free energy value (Gm) 
that is lower than the corresponding Gt value (observe the 
points in Figure 2). As there is no enthalpy of mixing (∆Hmixing 
= 0, as assumed), the difference in free energy is due 
exclusively to the entropy of mixing (A + B) with (C + D) (a 
rather elaborated notation [6] for the entropy of mixing was 
used here for the sake of clarity, particularly in the following 
section). 

  (2) A+B+C+D
m t (A+B) (C+DG G T S ↔= − ∆

The entropy of mixing, then, is the reason why the graph of 
Gibbs free energy versus x is not a straight line like in Figure 
2, but a curve with a minimum as discussed in the Conclusion 
section. We should remind the reader that this is valid only for 
ideal liquids or gases, otherwise the curve would include a 
more or less important contribution from ∆Hmixing. 

At this point students should have understood the main 
points, and in a course for beginners it could be more advisable 
to jump from here to the section �Conclusions,� because the 
next section involves too many mathematical operations to 
demonstrate quantitative aspects that are not essential for a 
first comprehension of the subject. 

The Equation of the Curve 

We could derive expressions to give Gm as a function of XA, 
XB, XC, or XD; all these mole fractions, however, can be easily 
calculated if we know the value of x (see Table 1) [7]; we can, 
therefore, find Gm as a function of x. After combining eqs 1 
and 2, we have still to find  as a function of x. A+B+C+D

(A B) (C D)S + ↔ +∆
The entropy of mixing for ideal liquids (or gases), which can 

be found in most physical chemistry texts, is 

lnmixing i i
i

S nR X∆ = − ∑  

where n is the total amount of substances (in mol) and Xi is the 
mole fraction of component i. 

Now we will consider the following points: 

(a) A and B were already mixed together, the corresponding 
entropy being [8] (we remind the reader that there are 
always 1 � x mol of each component) 

A+B
A B

12 (1 )ln
2

S R x↔∆ = − −  

(b) C and D were also already mixed together (x mol of each), 
the corresponding entropy being 

C+D
C D

12 ln
2

S Rx↔∆ = −  
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D)(CB)(A +↔+

DCB)(A ↔↔+

DCBA ↔↔↔

BA
BA

+
↔∆S

DC
DC

+
↔∆S

DCBA
D)(CB)(A

+++
+↔+∆S

DCBA
DCBA

+++
↔↔↔∆S

S
A + B + C + D

Desired value

 

If the curve has a minimum, in this minimum the value of the 
first derivative of the function is zero. The first derivative is 

 ( )22ln ln 1mdG G RT x x
dx

 = ∆ + − −   

In the minimum, x has the equilibrium value xe: 

  ( )22
e e0 ln ln 1G RT x x = ∆ + − − 

and then 

 
( )

2
e

2
e

e
1

G
RTx

x

−∆

=
−

 
Figure 3. Relationship among values of entropy of mixing considered 
in the text. 

where the left expression can be regarded as a representation of 
the equilibrium constant Kx, because 
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e e
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2 2
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x

x x
X XK x xX X

⋅
= = − −⋅

 

(XA, XB, XC, and XD are, here, the mole fractions of the 
substances in the equilibrium state). 

Conclusions 

The equation of the curve of Gibbs free energy versus x for 
this system is very simple: 

Figure 4. Curve of free energy for ∆G = 0 (at 25 °C). 

  (4a) 
( ) ( )1

2 1

2 1 ln 1 ln

( ); (0 1) [10]

mG x G G RT x x x x

G G G x

= ∆ + + − − +  

∆ = − < <(c) The entropy of the whole mixture, starting from pure 
components (1 � x mol of A, 1 � x mol of B, x mol of C, 
and x mol of D) is [9] 

 

A+B C+D
A B C D

A+B+C+D
A B C D 2 [(1 )ln(1 ) ln ]

1 12 (1 )ln 2 ln
2 2

S S

S R x x

R x Rx

↔ ↔

↔ ↔ ↔

∆ ∆

∆ = − − − +

− − −
!""#""$ !"#"$

x x

x x

ln x

 

This can be easily introduced in any suitable computer 
program for plotting graphs with the desired values of ∆G and 
T. The lecturer can then use these curves to show how the free 
energy difference affects equilibrium. 

Observing eq 4a the student can realize that the shape of the 
curve depends exclusively on the value of ∆G and on the 
expression ( ) ( )2 1 ln 1 lnRT x x x− − + x , this expression 
being independent of energy values; G1, whose value can be 
only arbitrarily assigned, can just move the curve up or 
downward, without shape modifications (it would be the same 
as if we just moved the vertical scale). This means that we can 
plot curves, for the sake of observing its shape, for any 
reaction with known ∆G (remembering all restrictions), 
regardless the impossibility to know the values of G1 (and G2); 
we can assign any arbitrary value to G1 because the shape of 
the curve would be the same anyway. 

These three values are interrelated in the way depicted in 
Figure 3, from which we can find the desired value of the 
entropy: 

  (3) ( ) ( )A B+C+D
(A B) (C D) 2 1 ln 1 lnS R x x+

+ ↔ +∆ = − − − +

Now, combining eqs 1 through 3: 

  (4) 
( ) ( ) ( )1 21 2 1 ln 1

0 1 [10]
mG x G xG RT x x x

x

= − + + − − +
< <

Comparing eq 4a with its equivalent, eq 2, the student can 
also realize that the curve representing Gm can be interpreted as 
the addition (point by point) of two curves: a straight line 
given by the free energy of the extreme cases (Gt, or x∆G + 
G1) and a curve given by the entropy of mixing 
( , or A+B+C+D

(A+B) (C+D)T S ↔− ∆ ( ) ( )2 1 ln 1 lnRT x x x− − +  x ; cf. also 
eq 3). This curve has the shape depicted in Figure 4, and its 
depth is independent of the energy values; for this reason, 
when │∆G│ is large, we have a steep straight line and the 

This is the desired equation of the curve and can also be 
written as 

 
( ) ( )1

2 1

2 1 ln 1 ln

( ); (0 1) [10]

mG x G G RT x x x x

G G G x

= ∆ + + − − +  

∆ = − < <
 (4a) 
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curve due to the entropy of mixing put on the same scale looks 
much less deep; the addition results in a shallow curve, as can 
be seen comparing Figures 4�7. 

0.0 0.2 0.4 0.6 0.8 1.0
2

3
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9

10

xe= 0.7706 (Kx=11.28)

values!
Arbitrary

G
kJ mol-1

(A+B)
G1

G2
(C+D)

(∆G = G2 - G1)

∆G = - 6 kJ mol-1

 

 

x

 

Figure 5 is the graph of eq 4 (or eq 4a) for values of G1 and 
G2 taken arbitrarily as G1 = 10 kJ mol�1 and G2 = 4 kJ mol�1 at 
25 °C (298 K). The straight line G1G2 was included as a visual 
reference. 

Comparing Figures 4 to 7, it is easy to see that, when the 
free energy difference is high (|∆G| > 40 kJ mol�1, for 
instance), it is difficult to notice the occurrence of an 
equilibrium: the concentrations of the reactants are too low at  
equilibrium and, thus, are hard to detect. The appearance is 
that the reaction has proceeded to the end, transforming all 
reactants into products. 

In Figure 4 we see that when ∆G = 0 (rather uncommon for 
chemical reactions but it can occur, for instance, when A is a 
chiral organic iodide, C its enantiomer, and B and D are I�), the 
equilibrium point is in the center, with equal amounts of 
reactants and products. 

Figure 5. Curve of free energy for ∆G = �6 kJ mol�1 (at 25 °C). The 
shape of the curve is strongly affected by the value of ∆G. In Figures 
5, 6, and 7 are the curves for ∆G = 0, ∆G = �20 kJ mol�1 and ∆G = �
40 kJ mol�1. 

Finally, this approach offers the student an opportunity to 
realize the importance of entropy as a determinative factor for 
the occurrence of chemical equilibrium, itself one of the most 
fundamental concepts in chemistry. 
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(Kx=3217)
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G1 = ∆G0 (the ∆G0 value for the reaction, or the difference of free 
energy between reactants and products). Figure 6. Curve of free energy for ∆G = �20 kJ mol�1 (at 25 °C). 

6. The solutions mentioned in this text were prepared in steps (first 
mixing A with B, then C with D, etc.), each step having its own value 
of entropy of mixing. It is, therefore, necessary to distinguish 
between entropy values belonging to different steps. The notation 
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enable the reader to identify to which step each value of entropy 

belongs: the symbol  represents the entropy of mixing for a 
system in the initial state M and in the final state N; the double 
headed arrow Y↔Z indicates that Y and Z are separated, while the 
sum signal Y+Z means that Y and Z are mixed together.  

N
MS∆
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7. For this particular system, considering all restrictions, x has, in fact, 
the same value as the extent of reaction as defined, for instance, by 
MacDonald (see ref. 3): 

0
M M

M

n nx ξ
ν
−= =  

0
Mn : initial amount of component M; 

Mn : amount of component M after some reaction has taken place; 
Figure 7. Curve of free energy for ∆G = �40 kJ mol�1 (at 25 °C). 

Mν : stoichiometric coefficient of M in the particle equation for the 

reaction (negative for a reactant, positive for a product); Mν  is 

a pure number, ξ  is expressed in moles. 
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8. Summary of operations: 

( ) ( ) ( ) ( ) ( )
A+B
A B

mol

1 1 1 12 1 ln ln
2 1 2 1 2 1 2 1

x x x xS x R
x x x↔

 − − − −∆ = − − +  − − − − !"#"$

( )

x

A+B
A

1 1 1 12 1 ln ln
2 2 2 2BS R x↔

∆ = − − + 
 

 

9. Summary of operations: 

% %

A+B+C+D
A B C D

C DA B

(1 ) (1 ) (1 ) (1 )2 ln ln ln l
2 2 2 2 2 2 2

S

n
2

x x x x x x xR

↔ ↔ ↔∆

 
− − − − = − + + + 

  
!""#""$ !""#""$

( ) ( )

x

( ) ( ) ( )

( ) ( ) ( )

1
2 1 ln ln

2 2

1 12 1 ln 1 1 ln ln ln
2 2

12 1 ln 1 ln 2 1 ln ln
2 2

x xR x x

R x x x x x x

R x x x x R x x

− 
= − − + 

 
 = − − − + − + +  

 = − − − + − − +     

A+B+C+D
(A+B) (C+D) 0↔∆ =

1

Equation 4 or 4a can easily be introduced in a computer program for 
plotting graphs (see ahead), but they cannot be used to calculate Gm 
for the extreme points (x = 0 and x = 1), because ln 0 would appear in 

both cases. We know, however, that T S , in 

these cases, therefore, 

m 1

m 2

for 0,
for 1,

x G G
x G G

= =
= =

 

10. The graphs on this paper were plotted using the computer program 
Microcal Origin 6.0, by Microcal Software Inc. 
(http://www.microcal.com/). An example is as follows for the graph 
shown in Figure 5 (observe in Figure 8 and Figure 9 the appearance 
of the monitor screen during the operations of setting column 
values). First, we set column A (x axis) values (of the data table), for 
row number (i) 1 to 101, as (i � 1)/100; this will give 101 points for 
the curve, evenly distributed in the horizontal direction. Then, we set 
column B values (y-axis values for the straight line), also for row 
number (i) 1 to 101 as G1+(G2 � G1)*col(A) or, in this specific case, 
10�6*col(A). Finally, we set column C (y-axis values for the curve) 
as �col(A)*6 + 10 + 2 *0.00831*298*((1�col(A))*ln(1�
col(A))+col(A) *ln(col(A))). If this is set for row number (i) 1 to 101, 
the program will calculate the values, but will give an error for the 

first and last rows. These values should then be typed in the proper 
boxes (they are the same as the column B values for these extreme 
cases). After that, we have only to set the program to plot the graph 
with column A values in the x axis and both column B and column C 
values in the y axis. 

 
Figure 8. Appearance of the computer monitor screen while setting 
column B values. 

 
Figure 9. Appearance of the computer monitor screen after all the 
column values have been set, but the first row of column C has not yet 
been corrected. 
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